sábado, 25 de abril de 2015

Inecuaciones

Suponemos que ya conocemos los símbolos “>” (mayor que), “<” (menor que), “≥” (mayor o igual que) y  “≤” (menor o igual que) que usamos para relacionar un número con otro.
Escribimos, por ejemplo, 4 >–1 para señalar que 4 es mayor que –1. También podemos escribir –2 < 3 para señalar que –2 es menor que 3.
Ejemplos como estos se conocen como desigualdades
Sabido esto, diremos que una inecuación es el enunciado de una desigualdad que incluye alguna de las siguientes relaciones de orden: “mayor que”(>);  “menor que”  (<);  “mayor o igual que” (≥), y “menor o igual que” (≤). En la desigualdad aparece al menos una incógnita o valor desconocido y que se cumple para ciertos valores de ella.
Si el grado de la inecuación es uno (de primer grado), se dice que la inecuación es lineal.
Esto porque al escribir las desigualdades usamos números y por esto mismo es que podemos usar la recta numérica para visualizar o graficar dichas desigualdades.  

inecuaciones_lineales001
Observa que en la recta de arriba:
 4 > –1,  porque 4 está a la derecha de –1 en la recta numérica.
–2 < 3,  porque –2 está a la izquierda de 3 en la recta numérica
–3 < –1, porque -3 está a la izquierda de –1 en la recta numérica
 0 > –4, porque 0 está a la derecha de –4 en la recta numérica
 Una inecuación lineal, entonces, es una expresión matemática que describe cómo se relacionan entre sí dos expresiones lineales.
Por ejemplo: 3 + 5x ≥ 18;  y otro, –2(x + 3) < –9

Como resolver una inecuación
Resolver una inecuación es encontrar los valores de la incógnita para los cuales se cumple la desigualdad. La solución de una inecuación es, por lo general, un intervalo o una unión de intervalos de números reales, por ello es que se puede representar haciendo uso de intervalos en la recta numérica, la cual contiene infinitos números reales.
Las reglas para la resolución de una inecuación son prácticamente las mismas que se emplean para la resolución de ecuaciones, pero deben tenerse presentes las propiedades de las desigualdades.
Como ya dijimos, se puede ilustrar la solución de una inecuación con una gráfica, utilizando la recta numérica y marcando el intervalo entre los números que dan solución a la desigualdad. Si la solución incluye algún extremo definido del intervalo, en la gráfica representamos dicho extremo con un círculo en negrita; en cambio, si la solución no incluye el extremo, lo representamos mediante un círculo en blanco.
Ejemplo: x > 7 (equis es mayor que 7)


inecuaciones_lineales003

Los valores mayores a 7 se representan a la derecha de la recta numérica y no incluyen al 7. En intervalo desde el punto blanco hacia el infinito a la derecha se escribe: inecuaciones_lineales005

Ejemplo: x ≥ 7 (equis es mayor o igual a 7)

inecuaciones_lineale007

Los valores mayores e iguales a 7 se representan a la derecha de la recta numérica e incluyen al 7. El intervalo desde el punto negro hacia el infinito a la derecha se escribe: inecuaciones_lineales009
Nótese la postura del corchete cuando incluye y cuando no incluye una cifra determinada dentro del intervalo.

Resolución de inecuaciones lineales (de primer grado) con una incógnita
Veamos algunos ejemplos:
Resolver la inecuación 4x - 3 > 53 (Se lee: cuatro equis menos tres es mayor que 53)
Debemos colocar las letras a un lado y los números al otro lado de la desigualdad (en este caso, mayor que  >), entonces para llevar el –3 al otro lado de la desigualdad, le aplicamos el operador inverso (el inverso de –3 es +3, porque la operación inversa de la resta es la suma).
Tendremos:   4x − 3 + 3 > 53 + 3
                         4x > 53 +3
                         4x > 56
Ahora tenemos el número 4 que está multiplicando a la variable o incógnita x, entonces lo pasaremos al otro lado de la desigualdad dividiendo (la operación inversa de la multiplicación es la división).
Tendremos ahora:     x > 56 ÷ 4
                                       x > 14
Entonces el valor de la incógnita o variable "x" serán todos los números mayores que 14, no incluyendo al 14.
Gráficamente, esta solución la representamos así:

inecuaciones_lineales010

inecuaciones_lineales012
Esto significa que en la recta numérica, desde el número 14 (sin incluirlo) hacia la derecha todos los valores (hasta el infinito + ∞) resuelven la inecuación.
Ver: PSU: Matemática,
Veamos el siguiente ejemplo:  –11x -5x +1 < –65x +36
Llevamos los términos semejantes a un lado de la desigualdad y los términos independientes al otro lado de la desigualdad (hemos aplicado operaciones inversas donde era necesario).
–11x –5x +65x < 36 –1
Resolvemos las operaciones indicadas anteriormente
49x < 35
Aplicamos operaciones inversas, y simplificamos.
inecuaciones_lineales014

Casos Especiales
Cuando el lado de la incógnita queda con signo negativo (–), se debe realizar un arreglo para eliminar ese signo negativo, ya que la incógnita nunca debe quedar con valor negativo.
Veamos el siguiente ejemplo:
2x –[x –(x –50)] < x – (800 –3x)
Primero quitamos los paréntesis:
2x –[x –x +50] < x –800 +3x
Reducimos términos semejantes.
2x –[50] < 4x –800
Ahora quitamos los corchetes
2x –50 < 4x –800
Transponemos los términos, empleando el criterio de operaciones inversas.
2x –4x < –800 +50
Nuevamente reducimos términos semejantes y llegamos a
–2x < –750
Pero sabemos que no puede quedar signo negativo en la parte de la incógnita, entonces cambiamos de signo a todo (–2x queda 2x y –750 queda 750), y además cambiamos el sentido de la desigualdad (< lo cambiamos por >).
2x > 750
Despejamos x pasando al 2 a dividir, luego simplificamos.
inecuaciones_lineales016

Resolución de Problemas
No es muy común encontrar problemas con inecuaciones, pero de todas formas, si nos encontramos frente a este caso, debemos plantearlo en lenguaje matemático y luego realizar las operaciones correspondientes para hallar el valor de la incógnita (el dato que deseamos conocer).
Veamos un problema sencillo como ejemplo:
Dentro de cinco años, Ximena tendrá no menos de 18 años. ¿Qué edad tiene actualmente Ximena?
Tenemos entonces:

          edad de Ximena
x + 5     edad de Ximena en 5 años
Sabemos que la edad de Ximena en cinco años será mayor que 18 años (Dentro de cinco años, Ximena tendrá no menos de 18 años).

x + 5 > 18
Resolvemos la inecuación:

x + 5 > 18
x  > 18 -5
x  > 13
Entonces podemos afirmar que Ximena actualmente tiene más de 13 años, pero no podemos determinar exactamente su edad.

Dos ejemplos de inecuaciones representando la solución en la recta numérica e indicando el intervalo en el cual se ubica ésta:
a)  inecuaciones_lineales018
X pertenece al intervalo que va entre el menos infinito y el menos un sexto incluido.

  b)    inecuaciones_lineales020
X pertenece al intervalo que va entre la fracción incluida y el infinito hacia la derecha.


Ecuaciones Cuadráticas

http://www.profesorenlinea.cl/matematica/Ecuaciones_Seg_grado.html

Ecuaciones de segundo grado y una incógnita

Sabemos que una ecuación es una relación matemática entre números y letras. Normalmente se trabaja con ecuaciones en las que sólo hay una letra, llamada incógnita, que suele ser la x.
Resolver la ecuación consiste en encontrar un valor (o varios) que, al sustituirlo por la incógnita, haga que sea cierta la igualdad.
Ese valor es la solución de la ecuación.
Ejemplo: Resolver la ecuación    x − 1 = 0
El número que hace que esa ecuación sea cierta es el 1, ya que 1 – 1 = 0, por lo tanto, 1 es la solución de la ecuación.
Si en la ecuación la incógnita está elevada al cuadrado, decimos que es una ecuación de segundo grado (llamadas también ecuaciones cuadráticas), que se caracterizan porque pueden tener dos soluciones (aunque también una sola, e incluso ninguna).
Cualquier ecuación de segundo grado o cuadrática se puede expresar de la siguiente forma:
                                 ax2 + bx + c = 0
Donde ab y c son unos parámetros que habrá que sustituir por los números reales que corresponda en cada caso particular.

Solución de ecuaciones cuadráticas

Hemos visto que una ecuación cuadrática es una ecuación en su forma ax2 + bx + c = 0, donde  a, b, y c son números reales.

Pero este tipo de ecuación puede presentarse de diferentes formas:
Ejemplos:
9x2 + 6x + 10 = 0        a = 9, b = 6, c = 10
3x2  – 9x  + 0  = 0        a = 3, b = –9, c = 0  (el cero, la c, no se escribe, no está)
–6x2 + 0x + 10 = 0       a = -6, b = 0, c = 10 (el cero equis, la b, no se escribe)
Para resolver la ecuación cuadrática de la forma ax2 + bx + c = 0 (o cualquiera de las formas mostradas), puede usarse cualquiera de los siguientes métodos:

Solución por factorización
En toda ecuación  cuadrática uno  de sus miembros es un polinomio de segundo grado y el otro es cero; entonces, cuando el polinomio de segundo grado pueda factorizarse, tenemos que convertirlo en un producto de binomios.
Obtenido el producto de binomios, debemos buscar el valor de x de cada uno.
Para hacerlo igualamos a cero cada factor y se despeja para la variable. Igualamos a cero ya que sabemos que si un producto es igual a cero, uno de sus multiplicandos, o ambos, es igual a cero.
Ejemplos
1) Resolver
(x + 3)(2x − 1) = 9
Lo primero es igualar la ecuación a cero.
Para hacerlo, multiplicamos los binomios:
ecuacion_seg_grado023
Ahora, pasamos el 9, con signo contrario, al primer miembro para igualar a cero:
ecuacion_seg_grado024
Ahora podemos factorizar esta ecuación:
(2x − 3)(x + 4) = 0
Ahora podemos igualar a cero cada término del producto para resolver las incógnitas:
Si
2x − 3 = 0
2x = 3
ecuacion_seg_grado025
Si
x + 4 = 0
x = −4
Esta misma ecuación pudo haberse presentado de varias formas:
(x + 3)(2x − 1) = 9
2x2 + 5x − 12 = 0
2x2 + 5x = 12
2x2 − 12 = − 5x
En todos los casos la solución por factorización es la misma:

2) Halle las soluciones de
ecuacion_seg_grado026
La ecuación ya está igualada a cero y solo hay que factorizar e igualar sus factores a cero y luego resolver en términos de x:
ecuacion_seg_grado027
Ahora, si
x = 0
o si
x− 4 = 0
4
Algunos ejercicios: Resolver cada ecuación por el método de factorización:
ecuacion_seg_grado028

Soluciones:
ecuacion_seg_grado029

Solución por completación de cuadrados
Se llama método de la completación de cuadrados porque se puede completar un cuadrado geométricamente, y porque en la ecuación cuadrática se pueden realizar operaciones algebraicas que la transforman en una ecuación del tipo:
(ax + b)2 = n
en la cual el primer miembro de la ecuación (ax + b)2, es el cuadrado de la suma de un binomio.
Partiendo de una ecuación del tipo
x2 + bx + c = 0

por ejemplo, la ecuación
x2 + 8x = 48, que también puede escribirse   x2 + 8x − 48 = 0
Al primer miembro de la ecuación (x2 + 8x) le falta un término para completar el cuadrado de la suma de un binomio del tipo
(ax + b)2
Que es lo mismo que
(ax + b) (ax + b)
Que es lo mismo que
(ax)2 + 2axb + b2
En nuestro ejemplo
x2 + 8x = 48, el 8 representa al doble del segundo número del binomio, por lo tanto, ese número debe ser obligadamente 8 dividido por 2 (8/2), que es igual a 4, y como en el cuadrado de la suma de un binomio ( a2 + 2ab + b2) el tercer término corresponde al cuadrado del segundo término (42 = 16) amplificamos ambos miembros de la ecuación por 16, así tenemos
x2 + 8x + 16 = 48 + 16
x2 + 8x + 16 = 64
la cual, factorizando, podemos escribir como sigue:
(x + 4) (x + 4) = 64
Que es igual a
(x + 4)2 = 64
Extraemos raíz cuadrada de ambos miembros y tenemos
ecuacion_seg_grado033
 Nos queda
x + 4 = 8
Entonces
x = 8 − 4
x = 4
Se dice que "se completó un cuadrado" porque para el primer miembro de la ecuación se logró obtener la expresión (x + 4)2, que es el cuadrado perfecto de un binomio.
Veamos otro ejemplo:
Partamos con la ecuación
x2 + 6x − 16 = 0
Hacemos
x2 + 6x = 16
Luego, a partir de la expresión x2 + 6x (primer miembro de la ecuación) debemos obtener una expresión de la forma (ax + b)2 (cuadrado de la suma de un binomio).
Para encontrar el término que falta hacemos ecuacion_seg_grado030
(Para encontrar dicho término en cualquier ecuación siempre debemos dividir por  2 el valor real del segundo término y el resultado elevarlo al cuadrado).
Ahora, para obtener la expresión completa se suma 9 a ambos miembros de la ecuación:
x2 + 6x = 16
x2 + 6x + 9 = 16 + 9
x2 + 6x  + 9 = 25
factorizamos, y queda
(x +3) (x + 3) = 25
(x + 3)2 = 25

La expresión x2 + 6x se ha completado para formar un cuadrado perfecto, en este caso (x + 3)2, y así la ecuación se resuelve con facilidad:
Extraemos raíz cuadrada
ecuacion_seg_grado034, y queda
x + 3 = 5   y  x + 3 = −5
(pues  52 = 5  y también (−5)2 = 5
Entonces
x = 5 − 3 
x = 2
Y
x = − 5 − 3
x = − 8
 La  ecuación 1 da  x = 2   y la ecuación 2 da  x = −8.
Otro  ejemplo para analizar y estudiar:
Resolver la ecuación: x2 – 6x + 8 = 0
Veamos: Con los términos x2 y –6x podemos formar el cuadrado de binomio (x – 3)2 , pero nos faltaría el término igual a 9, por lo tanto, dejamos las equis (x) a la izquierda y pasamos el 8 a la derecha de la igualdad:
x2 – 6x = − 8 
y sumamos 9 a ambos lados de la igualdad para que a la izquierda se forme el cuadrado de binomio:
¿Cómo encontramos el término que falta?, haciendo
ecuacion_seg_grado031

x2 – 6x = −8       /+9 (sumamos 9 en ambos miembros de la ecuación)
x2 − 6x + 9 = − 8 + 9
(x – 3)2 = 1
Extraemos las raíces cuadradas
ecuacion_seg-grado031

y queda
x – 3 = 1    y   x − 3 = −1

Si
x – 3 = 1
x = 1 + 3
x = 4
Si
 x – 3 = −1
x = −1 + 3
x = 2
Por lo tanto  x1 = 4 y  x2 = 2
Debemos hacer notar que el método de completar cuadrados terminará en lo mismo que la fórmula general, porque es de este método de donde sale dicha fórmula, usada en el método que vemos a continuación.
Ver: PSU: Matematica; Pregunta 028_2010

Solución por la fórmula general

Existe una fórmula que permite resolver cualquier ecuación de segundo grado, que es la siguiente:
Ecuacion_Seg_Grado001
La fórmula genera dos respuestas: Una con el signo más (+) y otra con el signo menos (−)  antes de la raíz. Solucionar una ecuación de segundo grado se limita, entonces, a identificar las letras ab y  c y sustituir sus valores en la fórmula.
La fórmula general para resolver una ecuación de segundo grado sirve para resolver cualquier ecuación de segundo grado, seacompleta o incompleta, y obtener buenos resultados tiene que ver con las técnicas de factorización.
Ejemplo:  
Resolver la ecuación  2x2 + 3x − 5 = 0
Vemos claramente que a = 2,     b = 3   y     c = −5, así es que:
Ecuacion_Seg_grado002
Ahora, tenemos que obtener las dos soluciones, con el + y con el − :
Ecuacion_Seg_grado003  y también      Ecuacion_Seg_grado004
Así es que las soluciones son Ecuacion_Seg_grado005.
Aquí debemos anotar algo muy importante:
En la fórmula para resolver las ecuaciones de segundo grado aparece la expresión ecuacion_Seg_grado007. Esa raíz cuadrada sólo existirá cuando el radicando (b2 − 4ac) sea positivo o cero.
El radicando b2 – 4ac se denomina discriminante y se simboliza por Δ. El número de soluciones (llamadas también raíces)depende del signo de Δ y se puede determinar incluso antes de resolver la ecuación.
Ecuacion_Seg_Grado008
Entonces, estudiando el signo del discriminante (una vez resuelto), podemos saber el número de soluciones que posee:
Si Δ es positivo, la ecuación tiene dos soluciones.
Si Δ es negativo, la ecuación no tiene solución.
Si Δ es cero, la ecuación tiene una única solución.
En el ejemplo anterior el discriminante era Δ = 49, positivo, por eso la ecuación tenía dos soluciones.
Obtendremos dos soluciones, una cuando sumamos a − b la raíz y lo dividimos por 2a, y otra solución cuando restamos a − b la raíz y lo dividimos por 2a.

Trabajando con ecuaciones de segundo grado

Como lo dijimos al comienzo, cualquier ecuación de segundo grado puede, mediante transformaciones, expresarse en la forma  ax2+ bx + c = 0,  donde  a,  y  b  son los coeficientes de los términos  x2  y  x, respectivamente y  c es el término independiente.

Ecuación de segundo grado completa

Una ecuación de segundo grado es completa cuando los tres coeficientes  a,  b,  y  c  son distintos de cero.
Entonces, la expresión de una ecuación de segundo grado completa es 
 ax2 + bx + c = 0.

Ecuación de segundo grado incompleta
Una ecuación de segundo grado es incompleta cuando los términos  b  o  c,  o ambos, son cero.
(Si a = 0, la ecuación resultante sería  bx + c = 0,  que no es una ecuación de segundo grado.)
La expresión de una ecuación de segundo grado incompleta es:
ax2 = 0;   si    b = 0    y    c = 0.
ax2 + bx = 0;    si    c = 0.
ax2 + c = 0;    si    b = 0.

Algunos ejemplos, con soluciones
1) Resolver: − 5x2 + 13x + 6 = 0
Se identifican las letras, cuidando que la ecuación esté ordenada respecto a la x, de grado mayor a menor. Con esta condición tenemos: a = − 5;  b = 13;  c = 6.
Se aplica la fórmula:
Ecuacion_Seg_Grado009
Como la raíz buscada es 17 (el cuadrado de 17 es 289), se tiene entonces que:
Ecuacion_Seg_Grado010
Según esto, tendremos dos raíces diferentes, una usando el signo + y otra usando el signo −.
Llamaremos X1 y X2  a las dos soluciones, que serán:
Ecuacion_seg_grado011

Ecuacion_Seg_grado012
Ambos valores de x satisfacen la ecuación, es decir, al sustituirlos en ella producen una identidad. Al procedimiento de sustituir para probar si los valores hallados satisfacen la ecuación se le denomina verficación.
Probando con x = 3. Resulta: −5 • (3)2 + 13 • (3) + 6 = −45 + 39 + 6 = 0, tal como se esperaba en el segundo miembro.
Probando con Ecuacion_Seg_grado013,  se tiene
Ecuacion_Seg_Grado014

Como ambas respuestas producen identidades, ahora es seguro que 3 y Ecuacion_Seg_Grado015 son las raíces de − 5x2 + 13x + 6 = 0

2.- Resolver: 6x − x2 = 9
Hacemos los cambios necesarios para que la ecuación tenga la forma conocida. Trasponiendo y cambiando de lugar resulta:
− x2 + 6x − 9 = 0. Ahora se identifican las letras:
a = −1 ;  b = 6 ;  c = −9 ; y se aplica la fórmula:
Ecuacion_Seg_Grado016
El discriminante (Δ)  es igual a cero, por lo cual se producen dos raíces iguales a 3, es decir, x1 = x2 = 3.
Sustituyendo los valores en la ecuación original, se verifica que: 6•3 − 32 = 18 − 9 = 9 con lo cual se ha comprobado la respuesta.

Ejercicios que se resuelven con ecuaciones cuadráticas

En los siguientes ejercicios mostraremos algunos planteamientos que pueden expresarse como una ecuación de segundo grado.
Para hacerlo, hay que entender la lógica del problema, identificando como x a una de las variables que el problema establece; luego deben escribirse las relaciones entre la variable, de acuerdo al planteamiento y, finalmente, se resuelve la ecuación.
Hay que destacar que sólo la experiencia mejora los resultados. Para practicar, los interesados pueden consultar el "Algebra" de Aurelio Baldor, que, para muchos, es la biblia del álgebra.
Problema 1
La suma de dos números es 10 y la suma de sus cuadrados es 58. Halle ambos números
Primero se asigna la variable x a una de las incógnitas del problema. Hay dos incógnitas que son ambos números, como el problema no hace distinción entre uno y otro, puede asignarse x a cualquiera de los dos, por ejemplo:
x = Primer número
Como la suma de ambos es 10, entonces necesariamente el otro será:
10 − x = Segundo número
Para entenderlo mejor:
Si entre su amigo y usted tienen $ 1.000, y su amigo tiene $ 400, ¿Cuánto tiene usted?, obviamente, restando el total menos 400, es decir 1.000 − 400 = $ 600. Si su amigo tiene $ x, la cuenta no cambia, sólo que no sabrá el valor sino en función de x, es decir, usted tiene 1.000 − x .
La condición final del problema establece que la suma de los cuadrados de ambos números resulta 58, entonces:
x2 + (10 - x)2 = 58
Esta es la ecuación a resolver
Para hacerlo, aplicamos algunas técnicas de álgebra elemental y luego reordenamos para llegar a la fórmula conocida.
Vemos que la operación indicada entre paréntesis es el cuadrado de un binomio. Es un error muy común que los estudiantes escriban: (a − b)2 = a2 − b2,  lo cual es incorrecto. La expresión correcta es: (a − b)2 = a2 − 2•a•b + b2
Desarrollando la ecuación se tiene: x2 + 102 − 2•10•x + x2 = 58 = x2 + 100 − 20•x + x2 = 58
Ordenando y agrupando: 2x2 − 20•x+ 42 = 0;
Dividiendo entre 2 toda la ecuación:
 x2 − 10x + 21 = 0
Ahora podemos aplicar la fórmula general para resolver la ecuación de segundo grado y llegaremos a x1 = 7 y x2 = 3.
Veamos, si tenemos
a = 1,                b = −10        c = 21
Ecuacion_Seg_Grado018
Los números buscados son 7 y 3.

Problema 2
El largo de una sala rectangular es 3 metros mayor que el ancho. Si el ancho aumenta 3 m y el largo aumenta 2 m, el área se duplica. Halle el área original de la sala.
Largo y ancho son diferentes. El problema permite que la variable x se asigne a cualquiera de las dos incógnitas, largo o ancho.
Supongamos que:
x = ancho de la sala
El largo es 3 metros mayor que el ancho, así es que:
x + 3 = largo de la sala.
El área de un rectángulo es la multiplicación de ambos:
x • (x + 3 ) = área de la sala.
Téngase en cuenta que estos son los datos iniciales.
Las condiciones del problema explican que el ancho aumenta en 3 metros y el largo aumenta en 2 metros, así que, luego del aumento quedan:
x + 3 = nuevo ancho de la sala
x + 5 = nuevo largo de la sala
(x + 3 ) • (x + 5) = nueva área de la sala
Según los datos del problema, el área se ha duplicado, así es que planteamos la ecuación:
(x + 3 ) • (x + 5) = 2 • x • (x + 3)
Se efectúan las multiplicaciones: x2 + 5x + 3x + 15 = 2x2 + 6x
Se pasa todo al primer miembro: x2 + 5x + 3x + 15 − 2x2 − 6x = 0
Se simplifica: − x2 + 2x + 15 = 0 Esta es la ecuación a resolver.
Se aplica la fórmula conocida y resulta: x1 = 5 y x2 = −3.
La solución x = −3 se desecha, ya que x es el ancho de la sala y no puede ser negativo. Se toma como única respuesta que el ancho original (x) era 5 metros.
Como el largo inicial  x + 3 = 8 metros, el área original era 8m • 5m = 40 m2.

Problema 3
Halle el área y perímetro del triángulo rectángulo mostrado. Las dimensiones están en metros Ecuacion_Seg_Grado019
Como es un triángulo rectángulo se cumple el Teorema de Pitágoras: "El cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos" (c2 = a2 + b2). La hipotenusa es el lado mayor (2x − 5) y los otros dos son los catetos, se plantea entonces la ecuación:
(x + 3)2 + (x − 4)2 = (2x − 5)2
Desarrollando cada binomio al cuadrado, se tiene:
x2 + 2 • 3 • x + 32 + x2 − 2 • 4 • x + 42 = (2x)2 − 2 • (2x) • 5 + 52 = x2 + 6x + 9 + x2 − 8x + 16 = 4x2 − 20x + 25
Reagrupando:
x2 + 6x + 9 + x2 − 8x + 16 − 4x2 + 20x − 25 = 0
Finalmente:
−2x2 + 18x = 0
Es la ecuación a resolver
Las raíces de la ecuación son x1 = 0 y x2 = 9.
La solución x = 0 se desecha, ya que entonces un cateto sería −4 m, lo cual no es posible. La solución es entonces, x = 9. De esta manera, el triángulo queda con catetos 12 metros y 5 metros y con hipotenusa 13 metros.
El área de un triángulo es base por altura dividido 2; la base y la altura son los dos catetos que están a 90° , por lo tanto el área es
Ecuacion_Seg_Grado018

El perímetro es la suma de los lados, es decir, P = 12 m + 5 m + 13 m = 30 m.


Sistemas de Ecuaciones Lineales


DEFINICIONES
  1. Es aquella en donde en cada término de la ecuación aparece únicamente una variable o incógnita elevada a la primera potencia. Por ejemplo:
    a 11 X1 + a 12 X2 + a 13 X3 + ... + a 1n Xn = C1 (1)
    Es una ecuación algebraica lineal en las variables X1, X2, X3, ... , Xn. Se admite que los coeficientes a11, a12, a13, ... , a1n y el término independiente C1, son constantes reales.
  2. ECUACIÓN ALGEBRÁICA LINEAL 
    Es un conjunto de ecuaciones que deben resolverse simultáneamente. En los sucesivo se considerarán únicamente sistemas de ecuaciones algebráicas lineales, o sea conjuntos de ecuaciones de la forma:
    a11 X 1 + a 12 X2 + a13 X 3 +... + a 1n X n = C 1 (a)
    a 21 X 1 + a 22 X 2 + a 23 X 3 +... + a 2n X n = C 2 (b) (2)
    ...
    a n1 X 1 + a n2 X 2 + a n3 X 3 + ... + a nn X n = C n (c)
    Aplicando la definición de producto entre matrices, este sistema de n ecuaciones algebraicas lineales con n incógnitas puede escribirse en forma matricial.
    Para ver la fórmula seleccione la opción "Descargar" del menú superior
    (3)
    Este sistema de ecuaciones puede escribirse simbólicamente como:
    A X = C (4)
    en donde A se llama Matriz del Sistema. La matriz formada por A, a la que se le ha agregado el vector de términos independientes como última columna, se le llama la Matriz Ampliada del Sistema, que se representa con (A, C).
    Entonces la matriz ampliada será:
    Para ver la fórmula seleccione la opción "Descargar" del menú superior
  3. SISTEMA DE ECUACIONES
  4. SOLUCIÓN DE UN SISTEMA DE ECUACIONES
Es un conjunto de valores de las incógnitas que verifican simultáneamente a todas y cada una de las ecuaciones del sistema.
De acuerdo con su solución, un sistema puede ser: Consistente, si admite solución; o Inconsistente, si no admite solución.
Un sistema Consistente puede ser: Determinado, si la solución es única o Indeterminado, si la solución no es única. En este caso se demuestra que existe una infinidad de soluciones.
  1. TEOREMAS SOBRE RANGOS
El rango de una matriz es el orden de determinante no nulo de mayor orden que puede obtenerse de esa matriz. El rango de la matriz A se representa con la notación r(A) y el de la matriz ampliada con r(A, C).
En álgebra se demuestra que:
  1. Para cualquier sistema, (*)
  2. Si r(A) < r(A, C) el sistema es inconsistente
  3. Si r(A) = r(A, C) el sistema de ecuaciones es consistente
En este caso, si además r(A) = n, el sistema es determinado e indeterminado si r(A) < n, siendo n el número de variables en el sistema.
En general, hay dos tipos de técnicas numéricas para resolver ecuaciones simultáneas: Directas, que son finitas; e Indirectas, que son infinitas.
Naturalmente, ninguna técnica práctica puede ser infinita. Lo que queremos decir es que en un principio los métodos directos (despreciando errores por redondeo) producirán una solución exacta, si la hay, en un número finito de operaciones aritméticas.
Por otra parte, un método indirecto requerirá en principio un número infinito de operaciones aritméticas para producir una solución exacta. Dicho de otra manera, un método indirecto tiene un error por truncamiento mientras que un método directo no lo tiene.
Sin embargo, la expresión "en principio" del párrafo anterior es crucial: en realidad se tienen errores por redondeo. Tendremos que considerar más cuidadosamente esta cuestión. En un sistema grande, mal comportado, los errores por redondeo de un método directo puede hacer que la "solución" carezca de sentido. A pesar de su error teórico por truncamiento, un método indirecto puede ser mucho más deseable porque en él los errores por redondeo no se acumulan.
  1. MÉTODO DE ELIMINACIÓN DE GAUSS
El primer método que se presenta usualmente en álgebra, para la solución de ecuaciones algebraicas lineales simultáneas, es aquel en el que se eliminan las incógnitas mediante la combinación de las ecuaciones. Este método se conoce como Método de Eliminación. Se denomina eliminación Gaussiana si en el proceso de eliminación se utiliza el esquema particular atribuido a Gauss.
Utilizando el método de Gauss, un conjunto de n ecuaciones con n incógnitas se reduce a un sistema triangular equivalente (un sistema equivalente es un sistema que tiene iguales valores de la solución), que a su vez se resuelve fácilmente por "sustitución inversa"; un procedimiento simple que se ilustrará con la presentación siguiente.
El esquema de Gauss empieza reduciendo un conjunto de ecuaciones simultáneas, tal como se muestra en (2), a un sistema triangular equivalente como:
Para ver la fórmula seleccione la opción "Descargar" del menú superior
(6)
en el cual los superíndices indican los nuevos coeficientes que se forman en el proceso de reducción. La reducción real se logra de la siguiente manera:
  1. Para ver la fórmula seleccione la opción "Descargar" del menú superior
    (7)
  2. La primera ecuación (2) se divide entre el coeficiente de X1 en esa ecuación para obtener:
    Para ver la fórmula seleccione la opción "Descargar" del menú superior
    (8)
  3. La ec. (7) se multiplica entonces por el coeficiente de X1 de la segunda ecuación (2) y la ecuación que resulta se resta de la misma, eliminando así X1. La ec. (7) se multiplica entonces por el coeficiente de X1 de la tercera ecuación (2), y la ecuación resultante se resta de la misma para eliminar X1 de esa ecuación. En forma similar, X1 se elimina de todas las ecuaciones del conjunto excepto la primera, de manera que el conjunto adopta la forma:
  4. La ecuación utilizada para eliminar las incógnitas en las ecuaciones que la siguen se denomina Ecuación Pivote. En la ecuación pivote, el coeficiente de la incógnita que se va a eliminar de las ecuaciones que la siguen se denomina el Coeficiente Pivote (a11 en los pasos previos).
    Esta reducción nos conduce a:
    Para ver la fórmula seleccione la opción "Descargar" del menú superior
    (9)A continuación se utiliza la tercer ecuación (9) como ecuación pivote, y se usa el procedimiento descrito para eliminar X3 de todas las ecuaciones que siguen a la tercer ecuación (9). Este procedimiento, utilizando diferentes ecuaciones pivote, se continúa hasta que el conjunto original de ecuaciones ha sido reducido a un conjunto triangular tal como se muestra en la ec. (6).
  5. Siguiendo los pasos anteriores, la segunda ecuación (8) se convierte en la ecuación pivote, y los pasos de la parte 1 se repiten para eliminar X2 de todas las ecuaciones que siguen a esta ecuación pivote.
  6. Una vez obtenido el conjunto triangular de ecuaciones, la última ecuación de este conjunto equivalente suministra directamente el valor de Xn (ver ec. 6). Este valor se sustituye entonces en la antepenúltima ecuación del conjunto triangular para obtener un valor de Xn-1, que a su vez se utiliza junto con el valor de Xn en la penúltima ecuación del conjunto triangular para obtener un valor Xn-2 y asi sucesivamente. Este es el procedimiento de sustitución inversa al que nos referimos previamente.
Para ilustrar el método con un conjunto numérico, apliquemos estos procedimientos a la solución del siguiente sistema de ecuaciones:
X1 + 4 X2 + X3 = 7
X1 + 6 X2 - X3 = 13 (10)
2 X1 - X2 + 2 X3 = 5
Utilizando como ecuación pivote la primera ecuación (el coeficiente pivote es unitario), obtenemos:
X1 + 4 X2 + X3 = 7
2 X2 - 2 X3 = 6 (11)
9 X2 + (0) X3 = -9
A continuación, utilizando la segunda ecuación del sistema (11) como ecuación pivote y repitiendo el procedimiento, se obtiene el siguiente sistema triangular de ecuaciones:
X1 + 4 X2 + X3 = 7
2 X2 - 2 X3 = 6 (12)
- 9 X3 = 18
Finalmente mediante sustitución inversa, comenzando con la última de las ecs. (12) se obtienen los siguientes valores:
X3 = -2
X2 = 1
X1 = 5
  1. Este método, que constituye una variación del método de eliminación de Gauss, permite resolver hasta 15 o 20 ecuaciones simultáneas, con 8 o 10 dígitos significativos en las operaciones aritméticas de la computadora. Este procedimiento se distingue del método Gaussiano en que cuando se elimina una incógnita, se elimina de todas las ecuaciones restantes, es decir, las que preceden a la ecuación pivote así como de las que la siguen.
    El método se ilustra mejor con un ejemplo. Resolvamos el siguiente conjunto de ecuaciones
    3.0 X1 - 0.1 X2 - 0.2 X3 = 7.8500
    0.1 X1 + 7.0 X2 - 0.3 X3 = - 19.3
    0.3 X1 - 0.2 X2 + 10 X3 = 71.4000
    Primero expresemos los coeficientes y el vector de términos independientes como una matriz aumentada.
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Se normaliza el primer renglón dividiendo entre 3 para obtener:
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    El término X1 se puede eliminar del segundo renglón restando 0.1 veces el primero del segundo renglón. De una manera similar, restando 0.3 veces el primero del tercer renglón se elimina el término con X1 del tercer renglón.
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    En seguida, se normaliza el segundo renglón dividiendo entre 7.00333:
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Reduciendo los términos en X2 de la primera y la tercera ecuación se obtiene:
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    El tercer renglón se normaliza dividiendolo entre 10.010:
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Finalmente, los términos con X3 se pueden reducir de la primera y segunda ecuación para obtener:
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Nótese que no se necesita sustitución hacia atrás para obtener la solución.
    Las ventajas y desventajas de la eliminación gaussiana se aplican también al método de Gauss-Jordan.
    Aunque los métodos de Gauss-Jordan y de eliminación de Gauss pueden parecer casi idénticos, el primero requiere aproximadamente 50% menos operaciones. Por lo tanto, la eliminación gaussiana es el mé todo simple por excelencia en la obtención de soluciones exactas a las ecuaciones lineales simultáneas. Una de las principales razones para incluir el método de Gauss-Jordan, es la de proporcionar un método directo para obtener la matriz inversa.
    1. INVERSIÓN DE MATRICES
    Para ver el item completo seleccione la opción ¨Descargar trabajo¨ del menú superior
    EJEMPLO
    Invertir la matriz
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Auméntese la matriz de coeficientes con una matriz identidad
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Usando a11 como pivote, el renglón 1 se normaliza y se usa para eliminar a X1 de los otros renglones.
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    En seguida, se usa a22 como pivote y X2 se elimina de los otros renglones.
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Finalmente, se usa a33 como pivote y X3 se elimina de los renglones restantes:
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Por lo tanto, la inversa es:
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    Se puede resolver un sistema de ecuaciones con la inversa de la matriz de coeficientes, de la siguiente manera:
    Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
    donde C es el vector de términos independientes.
    Comparando ambos métodos, es evidente que el método de inversión de matrices no es práctico para la solución de un sólo conjunto (o dos o tres conjuntos) de ecuaciones simultáneas, porque la cantidad de cálculos que intervienen para determinar la matriz inversa es muy grande. Sin embargo, si se desea resolver 20 conjuntos de 10 ecuaciones simultáneas que difieren únicamente en sus términos independientes, una matriz aumentada que contiene 20 columnas de constantes (que se utilizarían en el método de eliminación) sería difícil de reducir, y se podría usar con ventaja el método de inversión de matrices.
  2. MÉTODO DE GAUSS - JORDAN 
  3. MÉTODO DE GAUSS-SEIDEL
El método de eliminación para resolver ecuaciones simultáneas suministra soluciones suficientemente precisas hasta para 15 o 20 ecuaciones. El número exacto depende de las ecuaciones de que se trate, del número de dígitos que se conservan en el resultado de las operaciones aritméticas, y del procedimiento de redondeo. Utilizando ecuaciones de error, el número de ecuaciones que se pueden manejar se puede incrementar considerablemente a más de 15 o 20, pero este método también es impráctico cuando se presentan, por ejemplo, cientos de ecuaciones que se deben resolver simultáneamente. El método de inversión de matrices tiene limitaciones similares cuando se trabaja con números muy grandes de ecuaciones simultáneas.
Sin embargo, existen varias técnicas que se pueden utilizar, para resolver grandes números de ecuaciones simultáneas. Una de las técnicas más útiles es el método de Gauss-Seidel. Ninguno de los procedimientos alternos es totalmente satisfactorio, y el método de Gauss-Seidel tiene la desventaja de que no siempre converge a una solución o de que a veces converge muy lentamente. Sin embargo, este método convergirá siempre a una solución cuando la magnitud del coeficiente de una incógnita diferente en cada ecuación del conjunto, sea suficientemente dominante con respecto a las magnitudes de los otros coeficientes de esa ecuación.
Es difícil definir el margen mínimo por el que ese coeficiente debe dominar a los otros para asegurar la convergencia y es aún más difícil predecir la velocidad de la convergencia para alguna combinación de valores de los coeficientes cuando esa convergencia existe. No obstante, cuando el valor absoluto del coeficiente dominante para una incógnita diferente para cada ecuación es mayor que la suma de los valores absolutos de los otros coeficientes de esa ecuación, la convergencia está asegurada. Ese conjunto de ecuaciones simultáneas lineales se conoce como sistema diagonal.
Un sistema diagonal es condición suficiente para asegurar la convergencia pero no es condición necesaria. Afortunadamente, las ecuaciones simultáneas lineales que se derivan de muchos problemas de ingeniería, son del tipo en el cual existen siempre coeficientes dominantes.
La secuencia de pasos que constituyen el método de Gauss-Seidel es la siguiente:
  1. Asignar un valor inicial a cada incógnita que aparezca en el conjunto. Si es posible hacer una hipótesis razonable de éstos valores, hacerla. Si no, se pueden asignar valores seleccionados arbitrariamente. Los valores iniciales utilizados no afectarán la convergencia como tal, pero afectarán el número de iteraciones requeridas para dicha convergencia.
  2. Partiendo de la primera ecuación, determinar un nuevo valor para la incógnita que tiene el coeficiente más grande en esa ecuación, utilizando para las otras incógnitas los valores supuestos.
  3. Pasar a la segunda ecuación y determinar en ella el valor de la incógnita que tiene el coeficiente más grande en esa ecuación, utilizando el valor calculado para la incógnita del paso 2 y los valores supuestos para las incógnitas restantes.
  4. Continuar con las ecuaciones restantes, determinando siempre el valor calculado de la incógnita que tiene el coeficniente más grande en cada ecuación particular, y utilizando siempre los últimos valores calculados para las otras incógnitas de la ecuación. (Durante la primera iteración, se deben utilizar los valores supuestos para las incógnitas hasta que se obtenga un valor calculado). Cuando la ecuación final ha sido resuelta, proporcionando un valor para la única incógnita, se dice que se ha completado una iteración.
  5. Continuar iterando hasta que el valor de cada incógnita, determinado en una iteración particular, difiera del valor obtenido en la iteración previa, en una cantidad menor que cierto (*)seleccionado arbitrariamente. El procedimiento queda entonces completo.
Refiriéndonos al paso 5, mientras menor sea la magnitud del (*)seleccionado, mayor será la precisión de la solución. Sin embargo, la magnitud del epsilon no especifica el error que puede existir en los valores obtenidos para las incógnitas, ya que ésta es una función de la velocidad de convergencia. Mientras mayor sea la velocidad de convergencia, mayor será la precisión obtenida en los valores de las incógnitas para un (*)dado.
(*) Para ver la fórmula seleccione la opción "Descargar" del menú superior
EJEMPLO
Resolver el siguiente sistema de ecuación por el método Gauss-Seidel utilizando un (*)= 0.001.
0.1 X1 + 7.0 X2 - 0.3 X3 = -19.30
3.0 X1 - 0.1 X2 - 0.2 X3 = 7.85
0.3 X1 - 0.2 X2 - 10.0 X3 = 71.40
SOLUCIÓN:
Primero ordenamos las ecuaciones, de modo que en la diagonal principal esten los coeficientes mayores para asegurar la convergencia.
3.0 X1 - 0.1 X2 - 0.2 X3 = 7.85
0.1 X1 + 7.0 X2 - 0.3 X3 = -19.30
0.3 X1 - 0.2 X2 - 10.0 X3 = 71.40
Despejamos cada una de las variables sobre la diagonal:
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Suponemos los valores iniciales X2 = 0 y X3 = 0 y calculamos X1
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Este valor junto con el de X3 se puede utilizar para obtener X2
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
La primera iteración se completa sustituyendo los valores de X1 y X2 calculados obteniendo:
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
En la segunda iteración, se repite el mismo procedimiento:
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Comparando los valores calculados entre la primera y la segunda iteración
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Como podemos observar, no se cumple la condición
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Entonces tomamos los valores calculados en la última iteración y se toman como supuestos para la siguiente iteración. Se repite entonces el proceso:
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Comparando de nuevo los valores obtenidos
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Como se observa todavía no se cumple la condición
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Así que hacemos otra iteración
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Comparando los valores obtenidos
Para ver la fórmula seleccione la opción ¨Descargar trabajo¨ del menú superior
Dado que se cumple la condición, el resultado es:
X1 = 3.0
X2 = -2.5
X3 = 7.0
Como se puede comprobar no se tiene un número exacto de iteraciones para encontrar una solución. En este ejemplo, se hicieron 3 iteraciones, pero a menudo se necesitan más iteraciones.
a) ECUACIONES LINEALES HOMOGENEAS
ECUACIONES LINEALES HOMOGENEAS DE PRIMER ORDEN Consideramos la ecuación
y supongamos que 
Podemos resolver directamente esta ecuación:
Será .....................De la misma forma, tendremos
 , . . . .
Vemos que la solución general es
Llamamos a esta sucesión progresión geométrica de valor inicial C y razón A.
ECUACIONES LINEALES HOMOGENEAS DE SEGUNDO ORDEN
• Partimos de la ecuación de recurrencia
y buscamos soluciones que sean progresiones geométricas:
Suponemos y sustituimos
• Podemos simplificar esta ecuación en la forma
de donde, si , deducimos 
Llamamos a esta ultima ecuación la ecuación característica de la recurrencia.
Tenemos ahora tres casos:
1. Las raíces de la ecuación característica son reales y distintas
Sean las raíces.
 son, para valores arbitrarios de las constantes Ci, soluciones de la ecuación de recurrencia (1). Comprobarlo sustituyendo.
• La suma de las dos soluciones anteriores también es una solución. Lo comprobamos sustituyendo.
• Hemos obtenido una solución que depende de dos constantes arbitrarias.
Todas las soluciones están comprendidas en la fórmula:
Demostración:
Si suponemos dados los valores iniciales, a0 y a1, de la solución, el resto de la sucesión queda unívocamente determinado, por recurrencia y por ser la ecuación de orden 2, por estos dos valores (igual que en el caso de Fibonacci).
Sustituyendo n = 0, 1 en (2) obtenemos
Como suponemos que a0, a1, r1 y r2 son conocidos, vemos que (3) es un sistema lineal de dos ecuaciones con dos incógnitas.
Su determinante es y, por tanto, el sistema tiene solución única.
Hemos visto, entonces, que toda solución de (1) puede ser dada como caso particular de (2) para una elección adecuada, la dada por la solución de (3), de las constantes C1 y C2.
2. Las raíces de la ecuación característica son reales e iguales Llamemos r0 a la única raíz de la ecuación característica.
La discusión es en este caso similar a la anterior, salvo que debemos usar
Las comprobaciones necesarias para ver que, en este caso también, todo funciona bien son tan parecidas que las omitimos.
3. Las raíces de la ecuación característica son números complejos conjugados
Supongamos que las raíces son:
Podemos tratar este caso en la misma forma que el primero, de forma que obtenemos que la solución es
Esta solución es satisfactoria, salvo si observamos que la solución está expresada en términos de funciones de variable compleja.
Si escribimos las raíces en forma polar, , donde podemos tomar como definición ei_ :
  podemos reescribir la solución como
con . De esta forma la solución es combinación lineal de dos funciones de variable real y son los coeficientes los que son números complejos.
Ejemplo:
Volvemos a la ecuación de Fibonacci 
Su ecuación característica es , con raíces y
 . Son raíces reales distintas.
La solución general es
Sustituyendo n = 0, 1 en esta expresión podemos obtener los valores de las constantes que corresponden a valores iniciales dados. Por ejemplo, para
F0 = 0 y F1 = 1 se obtiene .
¿Que valor tiene, aproximadamente, Fn para n grande?
Como 0 < r2 < 1, para n muy grande el segundo sumando de la expresión exacta obtenida para Fn tiende a cero (i.e. se puede hacer tan pequeño como queramos). Entonces, para n muy grande, se obtiene
.
ECUACIONES HOMOGÉNEAS DE ORDEN ARBITRARIO
Consideramos la ecuación de recurrencia de orden k
con ecuación característica, obtenida en la misma forma que para k - 2,
Supongamos, para simplificar que la ecuación característica tiene k raíces reales, r1, r2, . . . , rk, distintas o no. Podemos entonces escribir la ecuación característica en la forma 
Teorema La solución general de la ecuación de recurrencia (8) es una combinación lineal de términos de la forma:
con ni - 1 términos por cada raíz ri.
  1. ECUACIONES LINEALES NO HOMOGÉNEAS
La resolución de ecuaciones no homogéneas es, en general, bastante más difícil que para el caso homogéneo.
Empezamos con un resultado general, y, luego, veremos un método que, en
ocasiones, funciona.
Suponemos una ecuación no homogénea
y llamamos ecuación homogénea asociada a
Supongamos que conocemos una solución, ,de la ecuación no homogénea
(9), a la que llamamos solución particular.
Teorema Toda solución de (9) se puede escribir como suma de la solución particular y una solución cualquiera de la ecuación homogénea asociada (10).
Demostración:
1. Representemos por an una solución cualquiera de la ecuación (10). Si sustituimos en (9) vemos que se satisface la ecuación.
2. Recíprocamente, supongamos que es otra solución de (9). Restando y
sustituyendo en (10) vemos que es solución.
Entonces, para resolver una ecuación, lineal, no homogénea basta encontrar
una solución particular y resolver completamente la ecuación homogénea asociada.
Describo ahora, usando un ejemplo como ilustración, un método para encontrar soluciones particulares.
Supongamos que la ecuación a resolver es
1. Escribir la ecuación característica de la ecuación homogénea asociada
y resolverla. Denotamos por p(r) el polinomio obtenido.
En nuestro ejemplo, la ecuación característica tiene raíces r = -3 y r = 2.
2. Encontrar la ecuación de recurrencia, homogénea con coeficientes constantes, más simple de la cual g(n) es solución.
Puede ser que g(n) no sea solución de ninguna ecuación de recurrencia lineal, homogénea y con coeficientes constantes.
Si es solución de una tal ecuación, continuamos el procedimiento encontrando su ecuación característica y resolviéndola. Denotamos por q(r) el polinomio hallado.
En nuestro ejemplo, g(n) = 2n - 1, y una ecuación de la que g(n) es solución tiene como raíces 2 y 1.
El polinomio característico es (r-2)(r- 1) = r2 - 3r + 2 =: q(r).
De aquí podemos obtener fácilmente la ecuación de recurrencia, pero, realmente, no hace falta.
3. Consideramos el polinomio P(r) := p(r)q(r), y escribimos la solución general de una ecuación homogénea con ecuación característica P(r) = 0.
En el ejemplo, será:
P(r) : = p(r)q(r) = (r + 3) (r - 2)2 (r - 1)
y la solución asociada es:
H(n) : = A(-3)n + B2n + Cn2n + D.
4. Los dos primeros sumandos de H(n) son la solución general de la ecuación homogénea asociada. Podemos ver que el resto es, para valores particulares de las constantes, la solución particular buscada.
En nuestro caso, la solución particular sería
para valores de C y D que hay que calcular.
Sustituimos esta sucesión en (11), y operando, llegamos a la ecuación
con solución D = 1/4 y C = 2/5.
Hemos comprobado así, que para estos valores de C y D, se obtiene una
solución particular de la ecuación no homogénea.
Ejercicio:
Usar el método anterior para hallar, para k = 2, 3, . . . , el valor de sumas del
tipo:
.
Indicación:
Tenemos
que es una ecuación de recurrencia lineal, de orden uno y no homogénea.